「異なるモダリティ間の双方向生成のための深層生成モデル」

2018年度論文賞受賞者の紹介

異なるモダリティ間の双方向生成のための深層生成モデル

[情報処理学会論文誌 Vol.59 No.3, pp.859-873]
[論文概要]

 画像と文書など異なるモダリティ間を双方向に生成するためには,それらの共有表現を獲得する必要がある.共有表現を獲得する単純な方法は,深層生成モデル(VAE)の入力をマルチモーダルにすることである(JMVAEと呼ぶ).双方向生成の際は一方のモダリティから共有表現を推論するが,本論文では,もう片方の欠損させたモダリティの次元が大きい場合に表現が崩れてしまうこと,そして既存の欠損値補完手法でも対処できないことを明らかにし,解決手法としてJMVAE-klと階層的JMVAEを提案している.実験から,この問題が解決し,従来の一方向だけの生成モデルと比較して同等以上の精度で双方向生成できることを確認している.

[推薦理由]

 本論文では、異なるモダリティ間の深層生成モデルにおいて双方向の生成モデルを可能とする手法を提案している。ベースラインとなる従来の片方向の生成モデルと欠陥問題に対処した拡張を提案しており、モダリティを統合した適切な共有表現の獲得や、ベースラインと同等以上の精度で双方向の生成を達成している。さらには論文の記述においても、課題設定が明確に示され、解決策も明瞭で分かりやすく提案手法の特徴を詳しく示しており、新規性、有用性、論文としての完成度がともに高く、読者にとって有益な情報が多い論文であると考えられる。よって、情報処理学会論文賞に相応しい優れた論文として、ここに推薦する。

鈴木 雅大 君

 情報処理学会 2013年北海道大学工学部卒業.2015年同大学大学院修士課程修了.2018年東京大学工学系研究科博士課程修了.博士(工学).2018年より東京大学大学院工学系研究科技術経営戦略学専攻 特任研究員.人工知能,深層学習の研究に従事.

松尾 豊 君

 1997年東京大学工学部卒業.2002年同大学院博士課程修了.博士(工学).産業技術総合研究所,スタンフォード大学を経て,2007年より,東京大学大学院工学系研究科技術経営戦略学専攻 准教授.2019年より同大学院人工物工学研究センター/技術経営戦略学専攻 教授.2014年より2018年まで人工知能学会倫理委員長.2017年より日本ディープラーニング協会理事長.人工知能学会論文賞,情報処理学会長尾真記念特別賞,ドコモモバイルサイエンス賞など受賞.専門は,人工知能,深層学習,Web工学.