# 嘘つき島の問題

#### 清 (明治大学理工学部) 石畑 ishihata@cs.meiji.ac.jp

今回は、2002年11月、金沢大会の問題G「True Liars」を取り上げる (問題は http://www.kitnet.jp/icpc/ 参照). 孤島に嘘つき人間と正直人間が住んでいる. 見かけからは各人がどちらに属するか分からない. い くつかの質問をして、それに対する返答から、誰が正 直で誰が嘘つきかを明らかにするという趣旨である. 論理パズルによく見る設定だが、プログラミングの問 題としてもなかなか面白い.

#### ■問題

正直部族の人間が $p_1$ 人、嘘つき部族の人間が $p_2$ 人 住んでいる島がある.  $p_1$ と $p_2$ は既知である. しかし, 合計 $p_1+p_2$ 人の人間、それぞれがどちらに属するか を見かけから判断することはできない. 嘘つき人間は 常に嘘をつく、つまり、どんな質問に対しても、真実 とは違う答を返す. 当然ながら, 正直人間は常に正し い答を返す. 彼らにいくつかの質問をして、その答か ら、各個人が正直か嘘つきかを判定することが問題で ある

質問は、x番の人間に対して「y番の人間は正直か」 と聞くことしか許されない  $(1 \le x, y \le p_1 + p_2)$ .  $x \ge y$ は自由に選ぶことができる. たとえば, x=y として, 質問した相手自身のことを聞いてもかまわない.

プログラムの入力は、次のような形式になる.

 $n \quad p_1 \quad p_2$ 

 $x_1$   $y_1$   $a_1$ 

 $x_2$   $y_2$   $a_2$ 

 $x_n$   $y_n$   $a_n$ 

最初の行には、3つの整数がある.  $p_1$ と $p_2$ はすで に説明したとおり、nは質問の総数である、2行目以

降に、質問とそれに対する答が与えられる. x,と y, は、質問した相手とその質問で参照している人間の番 号である.  $a_i$  は, yes または no の文字列である.

プログラムは,入力された質問と答から,何番の住 人が正直かを答える. ちょうど $p_1$ 個の番号を答える ことになる. もちろん, 質問が不十分なら, 誰が正直 か正確には突き止められないことがある. 複数の組合 せが可能性として残ってしまう場合である. このよう な場合は、単に失敗と報告すればよいことになってい る (no と出力する).

入力データに矛盾がないことは保証されている.  $p_1$ とp, は、それぞれ 300 未満である。また、質問数nは 1000 未満と規定されている.

#### ■問題の分析

この問題には、いくつかの山がある、それが面白い ところなのだが、順を追って説明しよう. まず、入力 データからどんな推論ができるかを考察しなければな らない

「y は正直か」という質問に x が yes と答えたとし よう、このことから何が分かるだろうか、この時点で は、xが正直か嘘つきか分かっていないので、確定的 な結果は得られない.しかし、それなりの情報を得る ことは可能である.

もしxが正直なら、yも正直である. これは間違い ない. 逆に x が嘘つきなら、 x が言うことはすべて嘘 なのだから、yが正直だという答も嘘である、つまり、 y も嘘つきであることが分かる. この2つを合わせて, yes という答があったときは、xとyが同じ部族の人 間であると結論できる.

「y は正直か」という質問に x が no と答えた場合も 同様に推論できる. この場合は、xとyが違う部族に 属するというのが結論である.

rogram

いずれの場合も、xとyの関係は対称である。xが  $\lceil y$  は正直だ」と言った場合も、y が  $\lceil x$  は正直だ」と言った場合も、得られる情報は同じである。

x番とy番が同じ部族であることをx=y, 違う部族であることを $x\neq y$ と書くことにする. たとえば,  $1\neq 2$ ,  $3\neq 4$  が分かった後で, 1=3 が分かったとする. 1と3は同じ部族である. また, 2は1と違うし, 4は3と違う. 1 や3と違う部族は1つしかないのだから, 2 と4は1 や3とは逆の同じ部族に属することが分かる. まとめると, 1 と3が同じ部族, 2 と4が同じ部族で, 2 つのグループは逆の部族である.

このようにして、質問の答が得られるたびに、同種の人間のグループが徐々に大きくなっていく、これが第1の推論過程である。推論の途中では、次のようなグループ分けの形で知識が表現される。

 $(f_1, g_1)$ 

 $(f_2, g_2)$ 

 $(f_m, g_m)$ 

 $f_i$ と $g_i$ は、それぞれ人間の番号の集合である。集合  $f_i$ に属する人間は、すべて同じ部族に属する、集合  $g_i$  に属する人間もすべて同じ部族だが、彼らは $f_i$ に属する人間とは逆の部族である。 $g_i$  は空集合になることも ある。

i が j に等しくなければ、 $f_i$  や  $g_i$  に属する人間と  $f_j$  や  $g_j$  に属する人間の間の関係に関する情報は何もない。

 $f_i$ と $g_i$ の対をペア $c_i$ と呼ぶことにしよう、1人の人間は、1つのペア、しかもその一方の集合にしか属さない。

xとyの間に関係があると分かった場合は、両者が属するペアを1つにまとめる操作を行う。たとえば、 $f_i$ に属するxと、 $g_j$ に属するyの間に、x=yの関係があると分かった場合は、 $f_i$ と $g_j$ 、 $g_i$ と $f_j$ のそれぞれを合併して、 $F \leftarrow f_i \cup g_j$ 、 $G \leftarrow g_i \cup f_j$ とすればよい。ペア $c_i$ と $c_j$ はデータ構造から消して、その代わりに新しいペア(F,G)を追加することになる。 $x\neq y$ の場合も同様で、いずれにしろ新しい関係が分かった時点でペアとペアとの合併(2組の集合同士の合併)が起こる。

質問と答の入力が終わった時点で、人間のグループ分けが確定する。しかし、各ペアについて $f_i$ と $g_i$ の2つの部族に分かれることが分かっても、 $f_i$ と $g_i$ のどちらが正直か分からないので、これだけでは最終的な問題の解決には到達できない。

どの人間が正直かを決めるために最終的に役立つ情報は、正直人間の人数 $p_1$ と嘘つき人間の人数 $p_2$ である。たとえば、グループ分けの結果が次のようだったとする。

$$(f_1(2 \text{ Å}), g_1(1 \text{ Å}))$$
  
 $(f_2(3 \text{ Å}), g_2(1 \text{ Å}))$ 

さらに、正直人間が4人、嘘つき人間が3人と分かっていたとする.

 $f_1$  と  $g_1$  のいずれか一方,また  $f_2$  と  $g_2$  のいずれか一方は正直である.たとえば, $f_1$  と  $f_2$  が正直だと仮定すると,正直人間の人数が 5 になって,数が合わない.ほかもすべて試してみると, $f_1$  と  $g_2$  が正直なら 3 人, $g_1$  と  $f_2$  なら 4 人, $g_1$  と  $g_2$  なら 2 人が正直人間ということになる.この中で,前提として与えられた 4 人が正直という事実に合致するのは, $g_1$  と  $f_2$  が正直だとした場合だけである.このことから, $g_1$  に属する 1 人と  $f_2$  に属する 3 人が正直だと決めてよいことが分かる.

グループ分けが全部終わった時点で、m個のペアが残ったとすると、左右の集合のいずれかに正直を割り当てる組合せの数は 2mになる。原理的には、これらの組合せをすべて試してみれば、解答に到達できる。これが第 2 の推論過程になる。

ただし、単純にこの手続きを実行に移したのでは時間がかかりすぎる。 それをいかに避けるかがアルゴリズム上のポイントである。

一般には、複数の割当てが、正直人間の数と合致してしまうことも起こる。これでは、どちらの割当てが真の解なのか分からない。このような場合は、分からない、つまり no という答を直ちに返して終わりにして差し支えない。

#### ■第1の推論(グループ分け)の実現法

質問の答から人間をグループに分けていく操作をど のように実現したらよいだろうか.

C++ や Java の API を上手に使えば、集合に関する操作は簡単に実現できる。このような言語の場合は、上に述べた手続きをそのまま書き下すだけでよいだろう。

初めに、 $p_1+p_2$ 人の人間をそれぞれ自分 1 人だけからなるペアに入れる。その後で、x=y または  $x\neq y$  の関係が入力されるたびに、ペアとペアの合併を行っていく。 疑似プログラム風に書き下すと次のようになる.

```
for (i = 1; i \le p1 + p2; i + +) {
  f_i \leftarrow \{i\}; /*i番の人だけからなる集合 */
  g_i \leftarrow  空集合;
for (入力された関係ごとに){
  xとyがそれぞれ属するペアを探す(xが属する
  ペアをc_i, yが属するペアをc_iとする).
  if(i!=i){
     x \in g_i ならf_i とg_i を入れ替える.
     y \in g_i ならf_i とg_i を入れ替える.
     関係no, つまり x \neq y ならf, とg, を入れ
     替える (yes, つまり x=y なら何もしない).
    f_i \leftarrow f_i \cup f_i;
     g_i \leftarrow g_i \cup g_i;
     データ構造からペア (f,, g) を削除する.
  }
}
```

xが集合 $g_i$ の方に属している場合は,  $f_i$ と $g_i$ を入れ 替える. これによって、合併の直前には、必ずxがf: の方に属しているように正規化している. この問題の 場合,  $f_i$ と $g_i$ が対になっていることだけが重要で、特 定の人間が属している集合が $f_i$ であろうと $g_i$ であろ うとかまわないことに注意してほしい. y についても 同様である. yが属するペアについては. さらに関係 が $x\neq y$ の場合に $f_i$ と $g_i$ の入れ替えを行う. これは,  $x\neq y$  の場合, x が属するf と合併するのは, y が属す る $f_i$ と反対の $g_i$ の方だからである.

プログラムの動きを具体例で追ってみよう. 入力が 次のとおりだったとする.

```
5 4 3
1 2 yes
1 3 no
4 5 yes
5 6 yes
6 7 no
```

正直人間4人、嘘つき人間3人の合計7人である. 質問は5つある.

初期状態では、({1},{}) から({7},{}) までの7つのペ アが存在する. ここから次の順序で集合の合併操作が 進む。

- (1) 1 2 yes: ({1},{}) と({2},{}) を合併して({1,2},{}) に する
- (2) 1 3 no: ({1,2},{}) と ({3},{}) を逆向きに合併して  $(\{1,2\},\{3\})$  にする.
- (3) 4 5 yes: ({4},{}) と({5},{}) を合併して({4,5},{}) に

する.

- (4) 5 6 yes: ({4.5},{}) と ({6},{}) を合併して ({4.5.6},{}) にする
- (5) 67 no: ({4,5,6},{}) と ({7},{}) を逆向きに合併して  $(\{4,5,6\},\{7\})$  にする.

最終的には、2つのペア({1,2},{3})と({4,5,6},{7})が残

上の疑似プログラムを実際のプログラムに書き直す ことはさして難しくないと思われる。ここでは省略す ることにしよう.

### ■再帰呼出しによる方法

少し違う考え方として,次のようなプログラムで, グループ分けを実現することもできる.

```
void make_groups(void)
  int i;
  for (i = 1; i \le p1+p2; i++)
   belong_to[i] = 0;
  n_pair = 0;
  for (i = 1; i \le p1+p2; i++)
    if (belong_to[i] == 0) {
      n_pair++;
      mark(i, n_pair);
    }
}
void mark(int i, int g)
{
  int j;
  belong_to[i] = g;
  for (j = 1; j \le p1+p2; j++)
    if (relation[i][j] != 0)
      if (belong_to[j] == 0)
        mark(j, g*relation[i][j]);
}
```

今度は、関係の入力がすべて終わってから、一挙 にグループ分けを行うという想定である. 入力の結 果は、配列 relation に入っていると仮定している. xがyをyesと言った場合は, relation[x][y]と relation[y][x] を +1 にしてある. no と言った場 合は-1. 何も言っていない場合は0である.

上のプログラムは、1人の人間を出発点として、そ れと直接, 間接に関係を定められる人間を全部集め てくるという考え方に基づいている. $p_1+p_2$ 人の人 間すべてについて、i番の人間と yes または no の関 係があれば、その人間をi番と同じペアのどちらかの集合に入れる。プログラムでは、この人間の番号をjとして、belong\_to[j]にペアの番号を入れることによって、この操作を表現している。すなわち、i番の人間のペア番号をkとすると、i番と同じ部族の人間のbelong\_toには+kが残り、逆の部族の人間のbelong toには-kが残るようにしている。

関数 mark は、i番の人間の  $belong_to$  に値 gを入れる。gの値は負の場合もある。iと直接関係する人間には再び mark を呼び出してペアに組み入れる。したがって、関数 mark の呼出しは再帰的に行われる

前の章と同じ例であれば、配列 belong\_to に残る 値は次のとおりである。

これから1番と2番が同じ部族、3番がそれと逆の部族であることが分かる。ペアで表現すると、 $(\{1,2\},\{3\})$ である。当然ながら、前章のプログラムで求めた結果と一致する。

#### ■ union-find 問題との関係

グループ分けの問題は、有名な union-find 問題の変種であることに気づいた読者も多いと思う。前章と前々章で述べた方法は、いずれも分かりやすいが、計算量の観点から最善のものではない。 union-find 問題には非常に高速な解法が知られているので、それを利用すれば、計算量を極限まで小さくすることができる。 本題からはそれるが、union-find 問題とその解法について簡単に解説しておこう。

union-find 問題は、嘘つき島問題で答に yes しかない場合と同様である。n 個のものがあって、それらがいくつかにグループ分けされている。この状況で、x 番と y 番が同じグループに属するかという質問 (find) と x 番の属するグループと y 番の属するグループを 1 つにまとめる操作 (union) の 2 つを処理できるようにすればよい。

この問題の高速解法は、グループを木で表現するものである。普通、データ構造として木を使うときは、親から子を指すポインタを用意するものだが、ここでは逆に子の側に親を指すポインタを持たせる。

あるものが属するグループは、それが属する木の根で表現する。各ノードから親を指すポインタをたどる

ことによって、木を遡っていく. それ以上遡れないノードに達したら、それが木の根である. find 操作は、2つのものそれぞれの属する木の根を求め、それらを比較するだけで実現できる. 根同士が同じなら同じグループ、違えば違うグループである.

union 操作は、同様にして2つの根を求めた上で、一方を他方の親にするだけである。子になった方の木全体がもう一方の木の一部になるので、全体を1つのグループにまとめたことになる。

この手法に、高速化のための工夫をいくつか追加する。その1つは、木の根を求めるために木を遡った後で、途中のノードすべての直接の親を木の根に変えてしまうことである。この解法で使う木は、1つのグループが1つの木に対応していることだけが重要で、ノードとノードの親子関係には意味がない。そこで、木の根に達する操作を速くするために、各ノードを極力木の根の直接の子供にする。高速化のための工夫その2は、union操作でどちらの木を親にするかの決め方である。明らかにノード数の多い方の木を親にした方がよい。

これらの高速化をすると、find や union 操作の 1 回あたりの平均計算量は  $O(\log^* n)$  にまで小さくできる.ここで、 $\log^* n$  は、 $n \to \log_2 n \to \log_2(\log_2 n) \to \log_2(\log_2 n)$  かいって、 $\log_2(\log_2 n)$  かいった。と計算していって、値が 1 以下になるまでのステップ数である.この関数は、n を大きくしていけば、限りなく大きくなるのだが、その増え方がきわめてゆっくりとしている.たとえば、 $\log^* n$  が 5 を超えるのは、n が  $2^{65536}$  より大きいときである.こんなにたくさんのデータを扱うことは実際上考えられないので、 $O(\log^* n)$  は O(1) に等しいと考えて差し支えない.

union-find 問題は、その解法 (特に逆向きの木を使うデータ構造) が特異で、計算量もほかの問題には例を見ない変わったものである。アルゴリズムに関する基礎知識として身に付けて損はない。

しかし、ここでうっちゃりを食わすのだが、嘘つき 島の問題の場合、union-find 問題の高速解法の適用は 考えない方が無難だろう、グループ分けに要する計算 時間が問題になることはないからである。前章に述べ た単純な方法でも、グループ分けは一瞬で終わる。高 速なアルゴリズムを一生懸命実現するよりも、単純な 方法を手早くプログラミングする方が得策である。

この問題で計算量を心配しなければいけないのは、次の第2の推論の方なのである.

## ■第2の推論の単純な実現法 —再帰的探索

第2の推論は、各ペアの2つの集合のどちらを正 直人間に割り当てれば正直人間の数がp, に等しくな るか調べることである.

単純な方法としては、バックトラック法による 再帰的な探索(しらみつぶし)が考えられる. 関数 backtrackでi番目のペアについての割当て方を決 める.  $f_i$ を正直とする場合と、 $g_i$ を正直とする場合の 2つである. それぞれの場合について, backtrack を再帰的に呼び出して i+1 番目のペア以降の割当て 方を調べるようにすればよい.

この方法で問題が解けることは間違いない. しか し、問題は計算時間である。問題の分析の項で述べた とおり、このやり方の計算量は、ペアの総数を m と したとき、 $O(2^m)$  になる. バックトラックのm 個の 段階それぞれで、 $f_i$ と $g_i$ の2つの選択肢を調べるから である.

この問題で、ペアの数が最も多くなるのは、質問が 1つもなかった場合である.  $p_1+p_2$  人の人間それぞれ が自分1人だけからなるペアを作るので、ペアの総数 m は $p_1+p_2$  に等しくなる。この数は最大600(正確に は598) に達することがある. したがって、再帰的探 索では、最悪の場合の計算の量として 2600 程度を覚 悟する必要がある. これは膨大な計算時間であり, 到 底耐えられない.

一般に、再帰的探索は枝刈りによる効率改善が可 能な場合が多い、途中での打切りを加えることによっ て、探索する状態数を大幅に減らせる場合である. こ の問題の場合は、それ以降各ペアのどちらの集合を 選んでも目標の人数に達しない状態、どちらの集合を 選んでも目標の人数を超えてしまう状態などを検出し て、途中で打ち切るようにすれば、計算時間を短くで きる. これは一種の分枝限定法である. しかし, この ような高速化を頑張ってみても、すぐ答が返るような スピードにはなかなかならないようである.

# ■第2の推論の高速な実現法 -動的計画法

再帰的な探索では遅すぎる、枝刈りも思うにまかせ ないとなれば、動的計画法の適用を考えるのが順序で ある. 動的計画法 (dynamic programming) は, 連載 第3回(2002年6月号)でも紹介されているが、要す るに、計算の途中結果を入れる表を用意して、これを

ある組織的な順序で埋めていく手法である。

この問題の場合は、ある人数に等しくなるような集 合の選び方が何通りあるかを求めることがポイントで ある. たとえば、3つのペアがあって、それぞれの2 つの集合の人数が(1,2),(1,3),(1,4)だったとし よう、ちょうど3人や9人になるような集合の選び 方は1通りしかない. 3人なら1+1+1だけ. 9人な ら2+3+4だけである.しかし、6人なら2通りの集 合の選び方がある. 1+1+4 でも6になるし, 2+3+1 でも6になる.

このような集合の選び方の数をあらゆる人数に関し て求めた表を作る. そして, これを更新していく. 更 新というのは、ペアを1つ1つ順に調べながら、そ こまでの範囲のペアだけを使った選び方の数を表に残 すようにするという意味である.

上の3つのペアの例だと、表の更新の様子は次の ようになる.

| 人数           | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |  |
|--------------|---|---|---|---|---|---|---|---|---|---|--|
| 初期状態         | 1 | - | - | - | - | - | - | - | - | - |  |
| (1,2) まで入れると | - | 1 | 1 | - | - | - | - | - | - | - |  |
| (1,3) まで入れると | - | - | 1 | 1 | 1 | 1 | - | - | - | - |  |
| (1,4) まで入れると | - | - | - | 1 | 1 | 1 | 2 | 1 | 1 | 1 |  |

この図の横1列が、ある時点での表の内容である。見 やすくするために、0が入るべき欄はハイフンで表し

k 番目のペアを調べるときの表の更新操作は簡単で ある. k-1 番までのペアについて求めた表を old. k番を入れてできる新しい表を new とする. それぞれ 人数を表す添字をとる配列である. 集合 f, の要素数 を  $f_{count[k]}$ ,  $g_{k}$ の要素数を  $g_{count[k]}$ で表すこ とにする.

```
for (i = 0; i \le p1+p2; i++)
 new[i] = 0;
for (i = 0; i \le p1+p2; i++) {
  if (old[i] == 0)
  new[i+fcount[k]] += old[i];
  new[i+gcount[k]] += old[i];
```

これで論理的には正しいのだが、現実の計算機で計 算するには、もう少し配慮が必要である. このままで は、簡単にオーバーフローが起こるからである。表の 中の数の合計は最大 2600 になる. 1つ1つの数も非常 に大きくなることは容易に想像できるだろう.

この問題の場合、値を表現する組合せが2通り以 上存在するなら、何通りであるかを正確に知る必要は ない、何通りであろうと、1通りに定めることが不可 能であるという結論に変わりはないからである、いず れにしろ、誰が正直人間か正確には分からず、noと 出力して終わりにすべきケースに当たる.

このことを利用して、表の中に入れる数を2以下 に限るようにする. 表の中に現れる値は, 0, 1, 2 の3種類ということになる.2通り以上の組合せが存 在する場合は、すべて2という値で表す. これによ ってオーバーフローの発生を避けることができる.

この表現法を採用して、動的計画法の部分を最初か ら書き下すと、次のようになる.

```
table[0][0] = 1;
for (i = 1; i \le p1+p2; i++)
  table[0][i] = 0;
for (k = 1; k <= n_pair; k++) {
  for (i = 0; i \le p1+p2; i++) {
    table[k][i] = 0;
   which[k][i] = 0;
 for (i = 0; i \le p1+p2; i++) {
   if (table[k-1][i] == 0)
     continue;
    i = i+fcount[k];
    table[k][j] += table[k-1][i];
    if (table[k][j] > 2)
      table[k][j] = 2;
   which[k][j] = +k;
    j = i+gcount[k];
    table[k][j] += table[k-1][i];
    if (table[k][j] > 2)
      table[k][j] = 2;
    which[k][j] = -k;
}
```

ペアの番号も人間の番号も1から始まることにして いる. 0は何もないことを表す特別の添字である.

今度は、組合せの数を入れる配列 table を2次元 にしている。第1の添字は何番目のペアまで調べた かを表す. 配列 which には, 2つの集合のどちらを 選んだかを記録する.これは、解が見つかった後で、 正直人間の番号をプリントするために使う.

上の計算が終わったら、配列要素  $table[m][p_1]$ を調べる(プログラム中ではn\_pairという変数名で mを表している). これが 1 なら、which を調べて、 各ペアの該当する側の集合から正直人間の番号を集 めて出力すればよい. table  $[m][p_1]$  の値が 2 なら, no と出力するまでのことである.  $table[m][p_1]$ の 値が0になることはない(入力データに矛盾はない) と保証されている.

プログラムから明らかなように、この方法の計算量 は $O(m^2)$ である。最大でも $600^2$ にしかならない。現 在の計算機なら、まったく問題にならない計算の量で ある. 動的計画法を採用すれば、第2の推論もアッ と言う間に終わる.

#### ■別解の追求

動的計画法を使えば第2の推論を実現できること は分かった. しかし, これ以外の方法ではなかなかう まくいかない. つまり、普通のプログラミング技法の 中では、動的計画法がほとんど唯一の解法である.

1種類の解き方しか成立しないのでは面白くない. そこで, 何とか実用的な時間で解ける別解を見つけて やろうと試みた.

手がかりは、各ペアの2つの集合の人数差にある. まず、どれか1つのペアの2つの集合が同一の人数 であれば、直ちに no と答えてよいことが分かる. ど ちらの集合を選んでも同じ人数になるから、どちらを 選べばよいか決められない.

また、2つの集合の人数差の同じペアが2つ以上あ る場合、それらは全部1つにまとめて考えてよいこ とが分かる. 例で説明しよう. 3つのペアがあって, それらの人数が(1,3),(2,4),(5,7)だったとする. 3つとも、2つの集合の人数差は2で同じである。ま た、人数の少ない方の集合を左に書くことに統一して ある

このとき、ペアの左からも右からも選んで作る人 数, たとえば 1+4+5 (左, 右, 左) が解だったとす ると、この解以外にも解がある. 左から選んだペアと 右から選んだペアを1つずつ見つけ、それぞれ反対 側の集合を選ぶことにすれば、人数が同じになるから である. 例の場合は、3+2+5(右, 左, 左)という選 び方で同じ人数が得られる.

つまり、このような場合に唯一の解が存在するとす れば、全ペアとも左から選ぶか、全ペアとも右から選 ぶか,2 通りしかない.1+2+5 か3+4+7 かのいずれ かである.

このような考察から、3つのペアを1つにまとめて、 (1+2+5, 3+4+7)=(8, 14) にしてしまうことが考えら れる. こうすれば、ペアの総数が600になることは なくなる. 人数差が同じペアは全部1つにまとまるの で、最もペアの数が多くなるのは差が1のペア、2の ペア、3のペア、…が1つずつの場合である、1+2+ 3+...+m が 600 を超えるのはm が 35 のときだから、

最大でも 35 個のペアということになる.  $2^{35}$  ではまだちょっと厳しいが、それでも  $2^{600}$  よりはだいぶましであろう. 再帰的な探索でも何とかなるかもしれない

ところが、実はこの方法はうまくいかないのである。正直人間の決め方が1通りしかないのであれば、確かに正しい解が得られる。しかし、複数の決め方が可能な場合に、1通りしかないと誤った答を導く可能性がある。たとえば、(0,2)、(0,2)、(0,2)、(0,4)の4つのペアがあって、正直人間を4人にする場合を考える。明らかに2通り以上の割当て方が存在する例である。ところが、差が同数のペアを1つにまとめると、(0,6)と(0,4)になって、4人にする組合せが1通りに決まってしまう。これは誤りである。

この例の場合は、差が2のペアを1つにまとめるときに、その倍数の差4のペアも一緒にすれば正しい解 (no) が得られる。しかし、一般の場合に、どのようなペアを1つにまとめればよいか、簡単には決められない。たとえば、(0,2)、(0,2)、(0,3)、(0,3)、(0,5) の場合に、差が2のペア2つ、差が3のペア2つをそれぞれ1つにまとめると、0+0+5と2+3+0が同じであるという事実が隠れてしまう。

結局,差が同数のグループを1つにまとめるという方法は定式化が難しいし,たとえ定式化できたとしても,元の問題よりむしろ難しくなっているようである。この方針は諦めざるを得ない.

#### ■実現可能な別解

差が同数のペアを1つにまとめるのは駄目だと分かった.しかし、2つの集合の人数差が同じであるペアに注目して高速化を図るという考え方が間違っているわけではない.前章における観察を再帰的探索で利用すれば、実用的な時間で解を求められる別解に到達することができる.

最初に述べた再帰的探索では、探索の1つのレベルが1つのペアに対応していた。各レベルで、該当するペアが持つ2つの集合のどちらを選ぶか決めた。今度は、再帰的探索の1つのレベルを人数差が同じペアの集まりに対応させる。

たとえば、人数差s人のペアがt個あったとする.これらのペアを組み合わせてできる人数は、t 個のうち何個のペアについて人数の少ない方の集合を選ぶかだけで決まる。選択肢としてあり得るのは、人数の少ない方の集合を選ぶペアの個数を0, 1, 2, ..., t とした、合計t+1種類の場合だけである。再帰的探

索の1つのレベルで、これらt+1種類の選択肢をすべて試すことにすればよい。単純な再帰的探索で $2^t$ 種類調べるところをt+1種類調べるだけで済むのだから、大幅なスピードアップになるに違いない。

この方法で解を探索して、解が見つかったときには、少し後始末が必要である。まず、2つ以上の解が見つかった場合は、noと出力して実行を打ち切る。さらに、解が1つしかなくても、それが不適当な場合もある。解が見つかったら、その解に至る探索の各レベルについて、 $0 \sim t$  個のうち何個と決めたかを調べる。それが0でもtでもなければ、探索によって見つかった解は1つでも、元の問題の解は複数存在する。理由は前章で説明したとおりである。この場合も、2つ以上の解が見つかったときと同様に、noと出力して、実行を打ち切ってよい。

この考え方に従ってプログラムを書いたところ、10秒くらいでコンテスト本番の入力データを処理できた. 筆者の少し古い計算機を使ってのことである. さらに, 分枝限定法を適用して, 見込みのない探索を打ち切るようにしたところ, それこそアッと言う間に答が求まるようになった.

前章で述べたとおり、最悪の場合は 2<sup>35</sup> 程度の計算の量になる恐れがあるが、いろいろな理由による探索途中の打切りが可能なので、そこまで遅くなることはめったにないようである。実際にどの程度遅くなることがあるのか、正確なことは分からない。

以上のとおり、別解を見つけることはできた.しかし、振り返ってみると、このやり方は決してスマートでないし、プログラミングが楽なわけでもない.計算時間の保証もないので、動的計画法より優れているとはとても言えない. やはり、この問題の解法としては動的計画法が決定版であろう.

(平成15年4月9日受付)

